## SLO Post-Test Review

## Examples of opposites to make zero

An example of opposites combining to equal zero:
The football team loses 12 yards. On the following play, the team gains 12 yards.

Integer rules: division, multiplication (3 decimals), adding (using variable expressions), divide fractions A few examples of integer rules:
$a+(-b)=$
$-\mathrm{a}(\mathrm{b})=$
$-\mathrm{a} / \mathrm{-b}=$

Using long division
An example of long division:
11.82

12 $\longdiv { 1 4 1 . 8 4 }$
12
21
12 98
$\frac{96}{24}$
$\begin{array}{r}24 \\ \underline{24} \\ \hline\end{array}$
0

Distributive property
An example of distributive property:
$5(2 x-6)=$

## Combining like terms

An example of combining like terms:

$$
3 x+4 y+8-x+10 y-4=1
$$

## Expressions to represent perimeter of rectangle

An example of writing the perimeter or a rectangle as an expression:
If a rectangle has a length of 12 and a width of w , the perimeter of the rectangle is

## Distributive property with division (perimeter of equilateral triangle is $\mathbf{6 a + 1 2}$ )

An example of distributing a fraction (or dividing):
A square has a perimeter of $20 x+32$. What is the length of each side?

## Expression from story problem

An example of writing an expression from a story problem:
Bruno enters a fishing contest. Bruno pays and entry fee of $\$ 30$. Bruno will earn $\$ 8$ for each fish caught. The expression representing Bruno's money earned in the fishing contest is

## Two step equations from story problem

An example of writing an equation or inequality from a story problem:
Tara is planning a party and can spend no more than $\$ 80$. The cost of the venue is a flat rate of $\$ 40$ and each guest will cost $\$ 9$. The inequality to represent this scenario is $\square$. If the question asked how many guests she could afford, her answer would be
guests.

Solve two-step inequalities and plot on number line
An example of solving a two-step inequality and plotting the solutions on a number line:

$$
\begin{aligned}
74-0.8 t & <10 \\
-0.8 t & <-64 \\
t & >80
\end{aligned}
$$



## Proportional relationships in a table

An example of a proportional relationship represented in a table:

| Hours | Miles |
| :---: | :---: |
| 2 | 100 |
| 3 | 150 |
| 5 | 250 |

## Discount and sales tax

An example of finding a final price after a discount and sales tax:
A shirt is originally priced as $\$ 18$. There is a $20 \%$ discount on the shirt. The sales tax is $6.5 \%$. The final price of the shirt is $\$ 15.34$.

## Unit rate from a table

An example of calculating a unit rate from a table:

| Apples Bought | Cost |
| :---: | :---: |
| 4 | $\$ 2.00$ |
| 6 | $\$ 3.00$ |
| 12 | $\$ 6.00$ |

## Equation from a table (proportional relationship) $\mathbf{y}=\mathbf{k x}$

An example of writing an equation to represent a table:

| $x$ | $y$ |
| :---: | :---: |
| 5 | 1 |
| 40 | 8 |
| 65 | 13 |

## Surface area of prism

An example of calculating the surface area of a prism:


## Volume of rectangular prism

An example of calculating the volume of a rectangular prism:


## Likelihood given a probability

Examples of providing the likelihood provided the probability:
$\qquad$
$0.2=$
55\% = $\qquad$
9\% = $\qquad$

$$
7 / 7=
$$

$\qquad$

## Spinner probability

Examples of finding the probability using a spinner:


$$
\mathrm{P}(\text { even number })=
$$

$$
\text { P(13 or } 15)=
$$

$\mathrm{P}(<7)=$ $\qquad$
$\mathrm{P}($ spinning 9 twice in a row $)=$ $\qquad$

## Experimental probability

An example of calculating probability from experimental results:
Probability Experiment

| Candy <br> Color | Number of <br> Times <br> Selected |
| :--- | :---: |
| Green | 2 |
| Orange | 1 |
| Purple | 4 |
| Yellow | 5 |

Based on the results, what is the probability the next candy color selected will be green? $\qquad$

## Scale drawing (find actual dimensions)

An example of finding the actual dimensions from a scale drawing:
Scale: $2 \mathrm{~cm}=3 \mathrm{ft}$


What are the actual dimensions in feet?

