Measures of Spread and Variation

- Range
- IQR (Interquartile Range)

How do we find "quartiles?"

Measures of Spread and Variation

IQR: How do we find "quartiles?" 2, 6, 8, 8, 10, 12, 16

What is the IQR?

Measures of Spread and Variation

Your Turn... (in your notes packet) Example 1: 5, 17, 33, 52, 23, 29, 30

Lower Quartile (Q1)

Second Quartile (Q2)

Upper Quartile (Q3)

Range _____

Interquartile Range

Measures of Spread and Variation

What if...?

2, 6, 6, 8, 10, 12

What is it?

What does it tell us?

2, 8, 16, 12, 10, 10, 14, 18, 12, 6, 8

Your Turn... (in your notes packet)

Students trying out for the basketball team were grouped according to height. The coach is looking to see if a student's height has any effect on his or her ability to shoot the ball. There were 19 students who were arranged by height.

<u>Heights of Basketball Team</u> (in inches) 55, 56, 59, 47, 60, 60, 72, 59, 63, 64, 58, 59, 65, 72, 73, 68, 63

Q1 =	Q2 =	Q3 =
Minimum =	Maximum =	Range =
IQR =		

I can display and compare data using visual representations.

Entrance Question

Write your answer in the open space on your Box and Whisker HW

Comparing Box-and-Whisker Plots

The box and whisker plots below represent the teams' points scored in the 2001-2002 season.

- 1) What team has the greater interquartile range?
- 2) What is the difference in the medians?
- 3) What conclusions can be made from the data?

What's a real-life example of an **outlier**?

Outlier's Effect on Measures of Center

Group 1: Find the **mean** with and without the outlier. With: _____ Without: _____ Difference: _____

Group 2: Find the **median** with and without the outlier. With: _____ Without: _____ Difference: _____

Which measure of center is affected <u>most</u>? **8, 16, 16, 14, 10, 32, 9**

Group 1: Find the **mean** with and without the outlier.

With: _____ Without: _____ Difference: _____

Group 2: Find the **median** with and without the outlier. With: _____ Without: _____ Difference: _____

Outlier's Effect on Measures of Center 8, 16, 16, 14, 10, 32, 9

Group 1: Find the **mean** with and without the outlier. With: _____ Without: _____ Difference: _____

Group 2: Find the **median** with and without the outlier. With: _____ Without: _____ Difference: _____

Which measure of center is affected <u>most</u>? **8, 16, 16, 14, 10, 32, 9**

Group 1: Find the **mean** with and without the outlier.

With: _____ Without: _____ Difference: _____

Group 2: Find the **median** with and without the outlier. With: _____ Without: _____ Difference: _____

I can display and compare data using visual representations.

Visual Overlap (Example 1 in Notes)

1) Which set of dot plots has the most visual overlap?

I can display and compare data using visual representations.

Visual Overlap (Example on Next Page of Notes)

Exercises: Copy the box plots and color the part that overlaps. Describe the degree of overlap between the two data sets as high overlap, small overlap, or no overlap.

