Compound Probability Models Review

You flip a coin then spin this spinner. Find each probability WITHOUT a model.

P(T and red or blue)?

You flip a coin then spin this spinner. Find each probability WITHOUT a model.

P(H and purple)?

You flip a coin then spin this spinner. Find each probability WITHOUT a model.

P(T and green or yellow)?

I can find the probability of compound events.

You flip a coin then spin this spinner. Find each probability WITHOUT a model.

P(H and red, yellow, or orange)?

With/Without Replacement

What is the probability of selecting B then L?

With Replacement

Without Replacement

With/Without Replacement

What is the probability of yellow twice in a row?

With Replacement

Without Replacement

I can find the probability of compound events.

With/Without Replacement

What is the probability of green then blue?

With Replacement

Without Replacement

State Test Practice

The spinner shown is divided into 8 equal sections.

1)

The arrow on this spinner is spun once.

What is the probability that the arrow will land on a section labeled with a number greater than 3?

State Test Practice

2)

A spinner is divided into blue, green, and red parts. George spins the spinner 300 times. A table of outcomes is shown.

Part	Times Spun
Blue	91
Green	107
Red	102

Based on this data, what is the estimated probability of the spinner landing on red?

State Test Practice

Event Q is more likely to occur than event T. The probability of event T is $\frac{1}{2}$.

What is a possible probability of event Q?

$$P(Q) =$$